問題のタイトル一覧

指数関数•对数関数

センター試験	数ⅡB
センター試験	数ⅡB
センター試験	数ⅡB
センター試験	数ⅡB
センター試験	数IIB
	数ⅡB
	数ⅡB
	数II B
	センター試験

問題532 第1問(必答問題)の一部(配点 15)

(15 センター試験 数ⅡB)

解答 [2] a, b を正の実数とする。連立方程式

$$(*) \begin{cases} x\sqrt{y^3} = a \\ \sqrt[3]{x} \quad y = b \end{cases}$$

を満たす正の実数x, y について考えよう。

(1) 連立方程式(*)を満たす正の実数x, y は

$$x = a^{2}b^{-3}$$
, $y = a^{p}b^{2}$ となる。ただし, $p = \frac{-2}{3}$ である。

(2) $b=2\sqrt[3]{a^4}$ とする。a がa>0 の範囲を動くとき,連立方程式(*)を満たす正の実数x,y について,x+y の最小値を求めよう。

したがって, 相加平均と相乗平均の関係を利用すると,

x+y は $a=2^q$ のとき最小値 $\sqrt{}$ をとることがわかる。ただし

$$q = \frac{\boxed{-5}}{\boxed{4}}$$
 である。

解説 (1) $xy^{\frac{3}{2}} = a$ …… ①, $x^{\frac{1}{3}}y = b$ …… ② とおくと,

- ① の両辺を2乗して、 $x^2y^3 = a^2$ ……… ①
- ② の両辺を3乗して、 $xy^3 = b^3$ ……… ②"
- ② に代入して、 $y = bx^{-\frac{1}{3}} = b(a^2b^{-3})^{-\frac{1}{3}} = a^{-\frac{2}{3}}b^2$

(2)
$$b = 2\sqrt[3]{a^4} = 2a^{\frac{4}{3}}$$
 のとき、
$$x = a^2b^{-3} = a^2(2^{-3}a^{-4}) = 2^{-3}a^{-2}, \qquad y = a^{-\frac{2}{3}}b^2 = a^{-\frac{2}{3}}(2^2a^{\frac{8}{3}}) = 2^2a^2 \quad \text{より、}$$
$$x + y = \frac{1}{8a^2} + 4a^2 \ge 2\sqrt{\frac{1}{8a^2} \cdot 4a^2} = \sqrt{2}$$
(等号は、 $\frac{1}{8a^2} = 4a^2$ より、 $a^4 = 2^{-5}$ つまり、 $a = 2^{-\frac{5}{4}}$ のとき)

問題532→

問題 5 3 3 第 1 間 (必答問題) の一部 (配点 15)

(16 センター試験 数ⅡB)

解答 [1]

(1)
$$8^{\frac{5}{6}} = \boxed{4}$$
 $\sqrt{\boxed{2}}$, $\log_{27} \frac{1}{9} = \frac{\boxed{-2}}{\boxed{3}}$ である。

(2)
$$y = 2^{x}$$
 のグラフと $y = \left(\frac{1}{2}\right)^{x}$ のグラフは **2** である。 $y = 2^{x}$ のグラフと $y = \log_{2} x$ のグラフは **3** である。 $y = \log_{2} x$ のグラフと $y = \log_{\frac{1}{2}} x$ のグラフは **1** である。 $y = \log_{2} x$ のグラフと $y = \log_{\frac{1}{2}} x$ のグラフは **1** である。

 \mathbf{h} \sim \mathbf{f} に当てはまるものを、次の 0 \sim 0 のうちから一つずつ選べ。

ただし、同じものを繰り返し選んでもよい。

① 同一のもの

- x軸に関して対称
- ② γ軸に関して対称
- ③ 直線 y = x に関して対称

(3)
$$x > 0$$
 の範囲における関数 $y = \left(\log_2 \frac{x}{4}\right)^2 - 4\log_4 x + 3$ の最小値を求めよう。

 $t = \log_2 x$ とおく。このとき、 $y = t^2 -$ **6** t + **7** である。また、

また、x がx>0 の範囲を動くとき、t のとり得る値の範囲は 3 である。

- lacksquare に当てはまるものを、次の $@\sim @$ のうちから一つずつ選べ。
- $\bigcirc t > 0$

- (1) t > 1
- ③ 実数全体

したがって、y は $t = \begin{bmatrix} \mathbf{3} \\ \end{bmatrix}$ のとき、すなわち $x = \begin{bmatrix} \mathbf{8} \\ \end{bmatrix}$ のとき、

最小値 -2 をとる。

解説(1) $8^{\frac{5}{6}} = (2^3)^{\frac{5}{6}} = 2^{\frac{5}{2}} = 4\sqrt{2}$, $\log_{27} \frac{1}{9} = \frac{\log_3 \frac{1}{9}}{\log_3 27} = -\frac{2}{3}$

(2)
$$y = 2^x$$
 のグラフと $y = \left(\frac{1}{2}\right)^x = 2^{-x}$ のグラフは,

② y軸に関して対称

 $y = 2^x$ のグラフと $y = \log_2 x$ のグラフは,

③ 直線 y = x に関して対称

 $y = \log_2 x$ のグラフと $y = \log_{\frac{1}{2}} x = -\log_2 x$ のグラフは, ① x軸に関して対称

 $y = \log_2 x$ のグラフと $y = \log_2 \frac{1}{x} = -\log_2 x$ のグラフは, ① x軸に関して対称

解説 (3) x > 0 のとき,

$$y = \left(\log_2 \frac{x}{4}\right)^2 - 4\log_4 x + 3 = (\log_2 x - 2)^2 - 4 \cdot \frac{\log_2 x}{2} + 3 = (\log_2 x)^2 - 6\log_2 x + 7$$
 より、 $t = \log_2 x$ とおくと、 $y = t^2 - 6t + 7 = (t - 3)^2 - 2$ である。 また、 x が $x > 0$ の範囲を動くとき、 t のとり得る値の範囲は、③ 実数全体したがって、 y は $t = 3$ のとき、すなわち、 $x = 8$ のとき、

問題533→

問題534 第1問(必答問題)の一部(配点 15)

(17 センター試験 数ⅡB)

解答 [2] 座標平面上に点 $A(0, \frac{3}{2})$ をとり、関数 $y = \log_2 x$ のグラフ上に 2 点 $B(p, \log_2 p)$ 、 $C(q, \log_2 q)$ をとる。線分ABを1: 2に内分する点がCであるとき,p,q の値を求めよう。

真数の条件により、p > 0 、q > 0 である。ただし、対数 $\log_a b$ に対し、a を底といい、b を真数という。

線 β ABを1:2に内分する点の座標は、p を用いて

と表される。これがCの座標と一致するので

$$\begin{cases} \boxed{1 \\ \boxed{3} \end{cases}} p = q \qquad \cdots \qquad \textcircled{4}$$

$$\boxed{1 \\ \boxed{3} \end{cases}} \log_2 p + \boxed{1} = \log_2 q \qquad \cdots \qquad \textcircled{5}$$

が成り立つ。⑤は

$$p = \boxed{\frac{1}{8}} q^{\boxed{3}} \qquad \qquad \dots$$
 6

と変形できる。④ と⑥ を連立させた方程式を解いて, p> 0 , q> 0 に注意すると

また、 $C \circ y$ 座標 \log_2 ($2 \sqrt{6}$) の値を、小数第 2 位を四捨五入して 小数第 1 位まで求めると、6 である。 $^{\bullet}$ に当てはまるものを、次の $0 \sim 6$ の うちから一つ選べ。ただし、 $\log_{10} 2 = 0.3010$ 、 $\log_{10} 3 = 0.4771$ 、 $\log_{10} 7 = 0.8451$ とする。

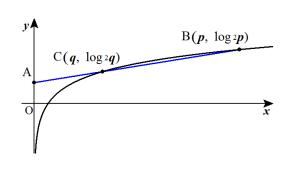
- 0.3
- (1) 0.6
- ② 0.9
- ③ 1.3
- 4 1.6
- (5) 1.9

- 6) 2.3
- (7) 2.6
- 8 2.9
- 9 3.3
- (a) 3.6
- (b) 3.9

解説 [2] 点A(0, $\frac{3}{2}$) と,関数 $y = \log_2 x$ のグラフ上の

2点B(p, $\log_2 p$), C(q, $\log_2 q$) について, p>0, q>0 であり,線分ABを1:2に内分する点の座標(x, y) は, $x=\frac{2\times 0+1\times p}{1+2}=\frac{p}{3}$,

$$y = \frac{2 \times \frac{3}{2} + 1 \times \log_2 p}{1 + 2} = \frac{1}{3} \log_2 p + 1$$



解説

これがCの座標と一致するので,

⑤ より、
$$\log_2 p = 3\log_2 q - 3$$
 であるから、 $p = \frac{1}{8}q^3$

また、④ より、p=3q であるから、

$$\frac{1}{8}q^3 = 3q \quad とおくと, \quad q^3 - 24q = q(q^2 - 24) = 0 \quad であり, \quad q > 0 \quad より, \quad q = 2\sqrt{6}$$

よって、
$$p = 6\sqrt{6}$$
 である。また、

$$\log_2(2\sqrt{6}) = 1 + \frac{1}{2}\log_2 6 = 1 + \frac{1}{2}(1 + \log_2 3) = \frac{3}{2} + \frac{1}{2} \cdot \frac{\log_{10} 3}{\log_{10} 2}$$

$$=1.5 + \frac{1}{2} \cdot \frac{0.4771}{0.3010} = 1.5 + \frac{0.4771}{0.6020} = 2.3 \qquad \text{\sharp 9, © 2.3}$$

問題534→

問題535 第1問(必答問題)の一部(配点 15)

(18 センター試験 数ⅡB)

解答 [2]c を正の実数として,不等式

$$x^{\log_3 x} \ge \left(\frac{x}{c}\right)^3 \qquad \qquad \dots$$

を考える。

3を底とする② の両辺の対数をとり、 $t = \log_3 x$ とおくと

$$t^{2} - 3$$
 $t + 3$ $\log_3 c \ge 0$ 3

となる、ただし、対数 $\log_a b$ に対し、a を底といい、b を真数という。

 $c=\sqrt[3]{9}$ のとき、② を満たすx の値の範囲を求めよう。③ により

$$t \leq \boxed{1}$$
 , $t \geq \boxed{2}$

である。さらに、真数の条件を考えて

$$lacksymbol{0} < x \leq lacksymbol{3}$$
 , $x \geq lacksymbol{9}$ となる。

次に、② が x > 0 の範囲でつねに成り立つようなc の値の範囲を求めよう。

x が x > 0 の範囲で動くとき, t のとり得る値の範囲は **2** である。

- \square に当てはまるものを、次の \square のうちから一つ選べ。
 - ① 正の実数全体
- ① 負の実数全体

② 実数全体

③ 1以外の実数全体

この範囲の t に対して、③ がつねに成り立つための必要十分条件は、

$$\log_3 c \geq \frac{3}{4}$$
 である。すなわち, $c \geq 4$ である。

解説 [2]
$$x^{\log_3 x} \ge \left(\frac{x}{c}\right)^3$$

② の両辺の3を底とする対数をとると,

$$(\log_3 x)^2 \ge 3(\log_3 x - \log_3 c)$$
 より, $t = \log_3 x$ とおくと

$$t^2 - 3t + 3\log_3 c \ge 0$$

$$c=\sqrt[3]{9}$$
 のとき, $\log_3 c=rac{2}{3}$ より,不等式は,

$$t^2 - 3t + 2 \ge 0$$
 $(t-1)(t-2) \ge 0$ $\sharp \emptyset, t \le 1, t \ge 2$

よって、 $0 < x \le 3$ 、 $x \ge 9$

また、x がx>0 の範囲を動くとき、t のとり得る値の範囲は、② 実数全体よって、すべての実数t に対して、③ が成り立つためには、

$$t^2 - 3t + 3\log_3 c = 0$$
 の判別式

$$D = 9 - 12\log_3 c \le 0 \quad \text{if } 0,$$

$$\log_3 c \ge \frac{3}{4}$$
 † t \$ † t

問題535→

問題536 第1問(必答問題)の一部(配点 15)

(19 センター試験 数ⅡB)

解答 〔2〕連立方程式

$$\begin{cases} \log_2(x+2) - 2\log_4(y+3) = -1 & \dots \\ \left(\frac{1}{3}\right)^y - 11\left(\frac{1}{3}\right)^{x+1} + 6 = 0 & \dots \end{cases}$$
 3

を満たす実数x, y を求めよう。

真数の条件により、x, y のとり得る値の範囲は 2 である。 2 に当てはまる ものを、次の0~0 のうちから一つ選べ。ただし、対数 $\log_a b$ に対し、a を底といい、 b を真数という。

- ① x > 0, y > 0 ① x > 2, y > 3 ② x > -2, y > -3

- $3 \quad x < 0, \quad y < 0$ $4 \quad x < 2, \quad y < 3$ $5 \quad x < -2, \quad y < -3$

底の変換公式により

$$\log_4(y+3) = \frac{\log_2(y+3)}{2}$$

である。よって、② から

$$y = \boxed{2} x + \boxed{1}$$

が得られる。

次に、 $t = \left(\frac{1}{3}\right)^{2}$ とおき、④ を用いて ③ をt の方程式に書き直すと

$$t^2 - \boxed{11} t + \boxed{18} = 0$$

が得られる。また、x が | タ | におけるx の範囲を動くとき、t のとり得る値の範囲は

である。⑥ の範囲で方程式⑤ を解くと、t = 2 になる。したがって、連立方程式

②, ③ を満たす実数x, y の値は

$$x = \log_3 \frac{\boxed{1}}{\boxed{2}} \quad , \qquad y = \log_3 \frac{\boxed{3}}{\boxed{4}}$$

であることがわかる。

解説 [2] 真数の条件により、② x>-2, y>-3 である。

底の変換公式により、 $\log_4(y+3) = \frac{\log_2(y+3)}{2}$ であるから、② は、

$$\log_2(x+2) - \log_2(y+3) = -1$$

$$\log_2(x+2) + 1 = \log_2(y+3)$$

これを ③ に代入すると,

解説

問題 **5 3 7 第 1 問 (必答問題) の一部**(配点 1 5)

(20 センター試験 数ⅡB)

解答 [2]

(1) t は正の実数であり、 $t^{\frac{1}{3}} - t^{-\frac{1}{3}} = -3$ を満たすとする。このとき $t^{\frac{2}{3}} + t^{-\frac{2}{3}} = \boxed{11}$

である。さらに,

$$t^{\frac{1}{3}} + t^{-\frac{1}{3}} = \sqrt{\boxed{13}}, \quad t - t^{-1} = \boxed{-36}$$

である。

(2) x, y は正の実数とする。連立不等式

$$\begin{cases} \log_3(x\sqrt{y}) \le 5 \\ \log_{81} \frac{y}{x^3} \le 1 \end{cases}$$
 3

について考える。

 $X = log_3 x$, $Y = log_3 y$ とおくと, ② は

2
$$X + Y \le$$
 10 4

と変形でき、③は

$$\boxed{\mathbf{3}} \quad \mathbf{X} - \mathbf{Y} \ge \boxed{\mathbf{-4}} \qquad \cdots \qquad \boxed{5}$$

と変形できる。

X, Y が ④ と ⑤ を満たすとき、Yのとり得る最大の整数の値は

7 である。また、x、y が ②、③ と $\log_3 y =$ 7 を同時に満たすとき、

x のとり得る最大の整数の値は $\boxed{5}$ である。

解説 (1) $t^{\frac{1}{3}} - t^{-\frac{1}{3}} = -3$ のとき、 $t^{\frac{2}{3}} + t^{-\frac{2}{3}} = \left(t^{\frac{1}{3}} - t^{-\frac{1}{3}}\right)^2 + 2 = 1$ 1 である。さらに、 $\left(t^{\frac{1}{3}} + t^{-\frac{1}{3}}\right)^2 = \left(t^{\frac{1}{3}} - t^{-\frac{1}{3}}\right)^2 + 4 = 1$ 3 より、 $t^{\frac{1}{3}} + t^{-\frac{1}{3}} = \sqrt{13}$ $t - t^{-1} = \left(t^{\frac{1}{3}} - t^{-\frac{1}{3}}\right)^3 + 3\left(t^{\frac{1}{3}} - t^{-\frac{1}{3}}\right) = -2$ 7 -9 = -3 6 $t - t^{-1} = \left(t^{\frac{1}{3}} - t^{-\frac{1}{3}}\right)\left(t^{\frac{2}{3}} + 1 + t^{-\frac{2}{3}}\right) = -3 \times 1$ 2 = -3 6 としてもよい。

(2) $X = log_3 x$, $Y = log_3 y$ とおくと,

③
$$/ \ddagger$$
, $\frac{1}{4} (Y - 3X) \le 1$ $\sharp \%$, $3X - Y \ge -4$ ⑤

ここで、連立方程式 2X+Y=1 0 ……… ⑥、3X-Y=-4 ……… ⑦ を解くと

⑥+⑦ より、
$$5X = 6$$
 よって、 $X = \frac{6}{5}$

解説

⑥ に代入して、
$$Y=10-2X=\frac{38}{5}$$
 よって、 X 、 Y が ④ と ⑤ を満たすとき、

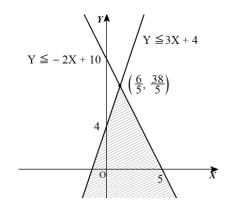
Yのとり得る最大の整数の値は、Y=7 であり、

このとき、④ より、 $X \leq \frac{3}{2}$ 、 ⑤ より、 $X \geq 1$

よって、 $1 \le \log_3 x \le \frac{3}{2}$ であるから、

 $3 \le x \le 3\sqrt{3}$ より、最大の整数 x は、 x = 5

問題537→



問題538 第1問(必答問題)の一部(配点 15)

(21 共通テスト 数ⅡB)

解答 [2] 二つの関数 $f(x) = \frac{2^x + 2^{-x}}{2}$, $g(x) = \frac{2^x - 2^{-x}}{2}$ について考える。

(1) $f(0) = \begin{bmatrix} \mathbf{1} \end{bmatrix}$, $g(0) = \begin{bmatrix} \mathbf{0} \end{bmatrix}$ である。また,f(x) は相加平均と相乗平均の

関係から、 $x = | \mathbf{0} |$ で最小値 $| \mathbf{1} |$ をとる。

g(x) = -2 となるx の値は $\log_2(\sqrt{5} - 2)$ である。

(2) 次の ① \sim ④ は、x にどのような値を代入してもつねに成り立つ。

 $f(-x) = \boxed{\mathbf{0}}$

 ${f(x)}^2 - {g(x)}^2 = \boxed{1}$

g(-x) = 3

g(2x) = | 2 | f(x) g(x)

┣ ┃ , ┃ ナ ┃ の解答群(同じものを繰り返し選んでもよい。)

 \bigcirc f(x)

 $\bigcirc -f(x)$ $\bigcirc g(x)$

 $\Im - g(x)$

(3) 花子さんと太郎さんは、f(x) と g(x) の性質について話している。

花子:①~④ は三角関数の性質に似ているね。

太郎: 三角関数の加法定理に類似した式(A)~(D)を考えてみたけど,つ

ねに成り立つ式はあるだろうか。

花子:成り立たない式を見つけるために、式(A)~(D)の β に何か具体的

な値を代入して調べてみたらどうかな。

太郎さんが考えた式 ―――

 $f(\alpha - \beta) = f(\alpha) g(\beta) + g(\alpha) f(\beta)$ (A)

 $f(\alpha + \beta) = f(\alpha) f(\beta) + g(\alpha) g(\beta)$ ····· (B)

 $g(\alpha - \beta) = f(\alpha) f(\beta) + g(\alpha) g(\beta)$ ····· (C)

 $g(\alpha + \beta) = f(\alpha) g(\beta) - g(\alpha) f(\beta)$

(1)(2)で示されたことのいくつかを利用すると、式(A) \sim (D)のうち、

計算することによって成り立つことが確かめられる。

ネ の解答群

(0)(A)

(B)

② (C)

③ (D)

解説 [2] 二つの関数
$$f(x) = \frac{2^x + 2^{-x}}{2}$$
, $g(x) = \frac{2^x - 2^{-x}}{2}$ について,

(1) f(0) = 1, g(0) = 0 rectain (1) f(0) = 1, g(0) = 0 rectain (1)

$$f(x) = \frac{2^x + 2^{-x}}{2} \ge \frac{1}{2} \cdot 2\sqrt{2^x \cdot 2^{-x}} = 1$$
 であり、等号が成り立つのは、

$$2^{x} = 2^{-x}$$
 より、 $2^{x} = 1$ つまり、 $x = 0$ のとき。

よって、f(x) はx=0 で。最小値1 をとる。

$$g(x) = \frac{2^x - 2^{-x}}{2} = -2$$
 のとき、 $2^x = t$ $(t > 0)$ とおくと、 $t - \frac{1}{t} = -4$ より、

$$t^2 + 4t - 1 = 0$$
 $\sharp \circ \tau$, $t = 2^x = -2 + \sqrt{5}$ $\sharp \vartheta$, $x = \log_2(\sqrt{5} - 2)$

(2) 次の関係式は、x にどのような値を代入してもつねに成り立つ。

$${f(x)}^2 - {g(x)}^2 = \frac{2^{2x} + 2 + 2^{-2x}}{4} - \frac{2^{2x} - 2 + 2^{-2x}}{4} = 1$$

- (3)(1)(2) で示されたことのいくつかを利用すると、式 $(A) \sim (D)$ のうち、
 - (A) は、 $\alpha = \beta = 0$ を代入すると、左辺=1、右辺=0 となり成立しない。
 - (C) は、 $\alpha = \beta = 0$ を代入すると、左辺=0、右辺=1 となり成立しない。
 - (D) は、 $\alpha = \beta = x$ を代入すると、左辺=g(2x)、右辺=0 となり成立しない。 よって、① (B) 以外の三つは成り立たない。

問題538→

問題539 第1問(必答問題)の一部(配点 15)

(22 共通テスト 数ⅡB)

解答 [2] a, b は正の実数であり, $a \ne 1$, $b \ne 1$ を満たすとする。太郎さんは $\log_a b$ と $\log_b a$ の大小関係を調べることにした。

(1) 太郎さんは次のような考察をした。

まず、
$$\log_3 9 = 2$$
 、 $\log_9 3 = \frac{1}{2}$ である。この場合

 $\log_{3} 9 > \log_{9} 3$

が成り立つ。

一方,
$$\log_{\frac{1}{4}}$$
 8 = $-\frac{3}{2}$, $\log_{\frac{1}{8}}\frac{1}{4}$ = $-\frac{2}{3}$ である。この場合 $\log_{\frac{1}{4}}$ 8 $<\log_{\frac{1}{4}}$ 4

が成り立つ。

(2) ここで,

$$\log_a b = t \qquad \qquad \cdots$$

とおく。

(1) の考察をもとにして、太郎さんは次の式が成り立つと推測し、それが正しいことを確かめることにした。

$$\log_b a = \frac{1}{t} \qquad \qquad \dots$$

① により, **1** である。このことにより **1** が得られ, ② が成り立つことが確かめられる。

| ソ の解答群

- $(1) \quad a^t = b$
- ② $b^a = t$

- \bigcirc $b^t a$
- $(4) \quad t^a = b$
- $(5) \quad t^b = a$

タ の解答群

- $(1) \quad a = b^{\frac{1}{t}}$

- $(4) \quad t = b^{\frac{1}{2}}$
- $(5) t = a^{\frac{1}{b}}$

(3) 次に、太郎さんは(2) の考察をもとにして

$$t > \frac{1}{t}$$

を満たす実数t ($t \neq 0$) の値の範囲を求めた。

t>0 ならば、③ の両辺にt を掛けることにより、 $t^2>1$ を得る。 このようなt (t > 0) の値の範囲は1 < t である。

t < 0 ならば、③ の両辺にt を掛けることにより、 $t^2 < 1$ を得る。

このようなt (t<0) の値の範囲は-1<t<0 である。

この考察により、③ を満たす $t(t \neq 0)$ の値の範囲は

$$-1 < t < 0$$
, $1 < t$

であることがわかる。

ここで、 a の値を一つ定めたとき、不等式

$$\log_a b > \log_b a$$

を満たす実数b (b > 0, $b \ne 1$) の値の範囲について考える。

④ を満たすb の値の範囲は、a > 1 のときは $\boxed{3}$ であり、

0 < a < 1 のときは 0 である。

チーの解答群

- ① $0 < b < \frac{1}{a}, \quad 1 < b < a$ ① $0 < b < \frac{1}{a}, \quad a < b$ ② $\frac{1}{a} < b < 1, \quad 1 < b < a$ ③ $\frac{1}{a} < b < 1, \quad a < b$

(4)
$$p = \frac{12}{13}$$
, $q = \frac{12}{11}$, $r = \frac{14}{13}$ とする。

次の $@\sim @$ のうち, 正しいものは $\boxed{2}$ である。

テの解答群

解説 (1) $\log_3 9 = 2$, $\log_9 3 = \frac{1}{2}$ より, $\log_3 9 > \log_9 3$

一方,
$$\left(\frac{1}{4}\right)^{-\frac{3}{2}} = 4^{\frac{3}{2}} = 2^3 = 8$$
 であるから,

$$\log_{\frac{1}{4}} 8 = -\frac{3}{2}, \quad \log_{8} \frac{1}{4} = -\frac{2}{3} \quad \text{ if } 0, \quad \log_{\frac{1}{4}} 8 < \log_{8} \frac{1}{4}$$

- - ① a'=b である。このことから、① $a=b^{\frac{1}{t}}$ が得られ、

$$\log_b a = \frac{1}{t}$$
 ……………… ② が導かれる。

(3) $t > \frac{1}{t}$ …………… ③ が成り立つのは、-1 < t < 0、t > 1 のときである。

$$-1 < \log_a b < 0$$
, $\log_a b > 1$ とおくと,

 $\log_a \frac{1}{a} < \log_a b < \log_a 1$, $\log_a b > \log_a a$ \$ 9,

・
$$a > 1$$
 のとき, ③ $\frac{1}{a} < b < 1$, $a < b$

・
$$0 < a < 1$$
 のとき、 0 $0 < b < a$, $1 < b < \frac{1}{a}$

(4)
$$p = \frac{12}{13}, q = \frac{12}{11}$$
 のとき,

$$0 であり、 $\frac{12}{11} > \frac{12}{13}$ 、 $\frac{12}{11} > \frac{13}{12}$ より、 $q > p$ 、 $q > \frac{1}{p}$ であるから、$$

$$0 < q < p$$
, $1 < q < \frac{1}{p}$ のどちらも満たさない。よって、 $\log_p q < \log_q p$ ……… ④

$$p = \frac{12}{13}, \quad r = \frac{14}{13} \quad \text{Obs},$$

$$0 であり、 $\frac{14}{13} > \frac{12}{13}$ 、 $\frac{14}{13} < \frac{13}{12}$ より、 $r > p$ 、 $r < \frac{1}{p}$ であるから、$$

$$1 < r < \frac{1}{p}$$
 を満たしている。よって、 $\log_p r > \log_r p$ ……… ⑤

よって、④、⑤ より、正しいものは ②
$$\log_p q < \log_q p$$
 かつ $\log_p r > \log_p p$

問題539→

問題編

問題532 第1問(必答問題)の一部(配点 15)

(15 センター試験 数ⅡB)

問題 [2] *a*, *b* を正の実数とする。連立方程式

$$(*) \begin{cases} x\sqrt{y^3} = a \\ \sqrt[3]{x} \quad y = b \end{cases}$$

を満たす正の実数x, y について考えよう。

(1) 連立方程式(*)を満たす正の実数x, y は

$$x = a$$
 b e $y = a^p b$ となる。ただし、 $p = \frac{fy}{f}$ である。

(2) $b=2\sqrt[3]{a^4}$ とする。a がa>0 の範囲を動くとき,連立方程式(*)を満たす正の実数x,y について,x+y の最小値を求めよう。

$$b=2\sqrt[3]{a^4}$$
 であるから、(*)を満たす正の実数 x 、 y は、 a を用いて $x=2^{\boxed{rac{by}{a}}}a^{\boxed{f Ff}}$ 、 $y=2^{\boxed{g}}a^{\boxed{f E}}$ と表される。

したがって、相加平均と相乗平均の関係を利用すると,

x+y は $a=2^q$ のとき最小値 $\sqrt{}$ をとることがわかる。ただし

問題533 第1問(必答問題)の一部(配点 15)

(16 センター試験 数ⅡB)

問題 [1]

$$(1)$$
 $8^{\frac{5}{6}} = \boxed{7}$ $\sqrt{\boxed{1}}$, $\log_{27} \frac{1}{9} = \frac{$ ウェ である。

b \sim τ に当てはまるものを、次の 0 \sim 3 のうちから一つずつ選べ。

ただし,同じものを繰り返し選んでもよい。

① 同一のもの

- ① x 軸に関して対称
- ② γ軸に関して対称
- ③ 直線 y = x に関して対称

(3)
$$x > 0$$
 の範囲における関数 $y = \left(\log_2 \frac{x}{4}\right)^2 - 4\log_4 x + 3$ の最小値を求めよう。 $t = \log_2 x$ とおく。このとき, $y = t^2 -$ **コ** $t +$ **サ** である。また,

また、x がx>0 の範囲を動くとき、t のとり得る値の範囲は $\boxed{\boldsymbol{y}}$ である。

シ に当てはまるものを,次の **0**~**3** のうちから一つずつ選べ。

① t > 0

- (1) t > 1
- ② t > 0 $\hbar > 0$ $t \neq 1$
- ③ 実数全体

したがって, y は $t = \begin{bmatrix} \mathbf{Z} \\ \end{bmatrix}$ のとき, すなわち $x = \begin{bmatrix} \mathbf{t} \\ \end{bmatrix}$ のとき,

最小値 **ソタ** をとる。

求めよう。

問題534 第1問(必答問題)の一部(配点 15)

(17 センター試験 数ⅡB)

問題 [2] 座標平面上に点 $A(0, \frac{3}{2})$ をとり、関数 $y = \log_2 x$ のグラフ上に 2点 $B(p, \log_2 p)$ 、 $C(q, \log_2 q)$ をとる。線分ABを1: 2に内分する点がCであるとき,p,q の値を

真数の条件により、 $p > \boxed{\mathbf{5}}$, $q > \boxed{\mathbf{5}}$ である。ただし、対数 $\log_a b$ に対し、a を底といい、b を真数という。

線 β ABを1:2に内分する点の座標は、p を用いて

$$\left(\begin{array}{|c|c|c|}\hline {\boldsymbol{\mathcal{F}}} & p \ , & \hline {\boldsymbol{\mathcal{T}}} & \log_2 p + \hline {\boldsymbol{\mathcal{T}}} \end{array}\right)$$

と表される。これがCの座標と一致するので

$$\begin{cases} \boxed{\cancel{f}} & p = q \\ \boxed{\cancel{y}} & \log_2 p + \boxed{\cancel{f}} = \log_2 q \end{cases} \qquad ... \qquad \boxed{5}$$

が成り立つ。⑤は

と変形できる。④ と⑥ を連立させた方程式を解いて,p> g , q> g に注意すると

$$p = \boxed{ m{J} \sqrt{ m{N} } }, \quad q = \boxed{ m{E} \sqrt{ m{J} } }$$
 である。

- \bigcirc 0.3
- ① 0.6
- ② 0.9
- ③ 1.3
- **4** 1.6
- \bigcirc 1.9

- 6 2.3
- (7) 2.6
- **8** 2.9
- 9) 3.3
- (a) 3.6
- (b) 3.9

問題 **5 3 5 第 1 問 (必答問題) の一部** (配点 1 5)

(18 センター試験 数ⅡB)

問題 [2]c を正の実数として,不等式

$$x^{\log_3 x} \ge \left(\frac{x}{c}\right)^3 \qquad \qquad \dots$$

を考える。

3を底とする② の両辺の対数をとり、 $t = \log_3 x$ とおくと

となる、ただし、対数 $\log_a b$ に対し、a を底といい、b を真数という。

 $c=\sqrt[3]{9}$ のとき、② を満たすx の値の範囲を求めよう。③ により

$$t \leq \boxed{\mathcal{F}}$$
 , $t \geq \boxed{\mathcal{Y}}$

である。さらに、真数の条件を考えて

- □ に当てはまるものを,次の ⑩~③ のうちから一つ選べ。
 - ① 正の実数全体
- ① 負の実数全体

② 実数全体

③ 1以外の実数全体

この範囲のtに対して、3がつねに成り立つための必要十分条件は、

問題536 第1問(必答問題)の一部(配点 15)

(19 センター試験 数ⅡB)

問題〔2〕連立方程式

$$\begin{cases} \log_2(x+2) - 2\log_4(y+3) = -1 & \dots \\ \left(\frac{1}{3}\right)^y - 11\left(\frac{1}{3}\right)^{x+1} + 6 = 0 & \dots \end{cases}$$
 3

を満たす実数x, y を求めよう。

真数の条件により、x, y のとり得る値の範囲は ϕ である。 ϕ に当てはまる ものを、次の0~0 のうちから一つ選べ。ただし、対数 $\log_a b$ に対し、a を底といい、 b を真数という。

- ① x > 0, y > 0 ① x > 2, y > 3 ② x > -2, y > -3

- $3 \quad x < 0, \quad y < 0$ $4 \quad x < 2, \quad y < 3$ $5 \quad x < -2, \quad y < -3$

底の変換公式により

$$\log_4(y+3) = \frac{\log_2(y+3)}{\boxed{\textbf{F}}}$$

である。よって、②から

$$y = \boxed{y} x + \boxed{\tau}$$

が得られる。

次に、 $t = \left(\frac{1}{3}\right)^n$ とおき、④ を用いて ③ をt の方程式に書き直すと

$$t^2 - \boxed{ \mathbf{F} + \boxed{ \mathbf{Z} }} = 0 \qquad \qquad \dots$$
 5

が得られる。また、x が | タ | におけるx の範囲を動くとき、t のとり得る値の範囲は

である。⑥ の範囲で方程式⑤ を解くと、t = へ になる。したがって、連立方程式 ②、③ を満たす実数x、y の値は

$$x = \log_3 \frac{\boxed{\texttt{L}}}{\boxed{\texttt{7}}}$$
, $y = \log_3 \frac{\boxed{\texttt{\Lambda}}}{\boxed{\texttt{\pi}}}$

であることがわかる。

問題 **5 3 7 第 1 問 (必答問題) の一部** (配点 1 5)

(20 センター試験 数ⅡB)

問題 [2]

(1) t は正の実数であり, $t^{\frac{1}{3}} - t^{-\frac{1}{3}} = -3$ を満たすとする。このとき $t^{\frac{2}{3}} + t^{-\frac{2}{3}} = \boxed{\mathbf{9}\mathbf{5}}$

である。さらに,

$$t^{\frac{1}{3}} + t^{-\frac{1}{3}} = \sqrt{\boxed{ arphi au}}$$
 , $t - t^{-1} = \boxed{$ **トナニ**

である。

(2) x, y は正の実数とする。連立不等式

$$\begin{cases} \log_3(x\sqrt{y}) \le 5 \\ \log_{81} \frac{y}{x^3} \le 1 \end{cases}$$
 (2)

について考える。

 $X = log_3 x$, $Y = log_3 y$ とおくと, ② は

と変形でき、③は

と変形できる。

X, Y が ④ と ⑤ を満たすとき、Yのとり得る最大の整数の値は

へ である。また、x、y が ②、③ と $\log_3 y =$ へ を同時に満たすとき、

x のとり得る最大の整数の値は π である。

問題538 第1問(必答問題)の一部(配点 15)

(21 共通テスト 数ⅡB)

問題 [2] 二つの関数 $f(x) = \frac{2^x + 2^{-x}}{2}$, $g(x) = \frac{2^x - 2^{-x}}{2}$ について考える。

(1) f(0) = **セ** , g(0) = **ソ** である。また, f(x) は相加平均と相乗平均の 関係から、 $x = | \mathbf{y} |$ で最小値 $| \mathbf{F} |$ をとる。

g(x) = -2 となる x の値は $\log_2(\sqrt{y} - \bar{r})$ である。

(2) 次の ① \sim ④ は、x にどのような値を代入してもつねに成り立つ。

 $f(-x) = \boxed{ }$

 $g(-x) = \boxed{ }$

 ${f(x)}^2 - {g(x)}^2 = \Box$

 $g(2x) = | \mathbf{z} | f(x) g(x)$

┣ ┃ , ┃ ナ ┃ の解答群(同じものを繰り返し選んでもよい。)

 \bigcirc f(x)

 $\Im - g(x)$

(3) 花子さんと太郎さんは、f(x) と g(x) の性質について話している。

花子:①~④ は三角関数の性質に似ているね。

太郎: 三角関数の加法定理に類似した式(A)~(D)を考えてみたけど,つ

ねに成り立つ式はあるだろうか。

花子:成り立たない式を見つけるために、式(A)~(D)の β に何か具体的

な値を代入して調べてみたらどうかな。

太郎さんが考えた式 ―――

$$f(\alpha - \beta) = f(\alpha) g(\beta) + g(\alpha) f(\beta)$$
(A)

$$f(\alpha + \beta) = f(\alpha) f(\beta) + g(\alpha) g(\beta)$$
 (B)

$$g(\alpha - \beta) = f(\alpha) f(\beta) + g(\alpha) g(\beta)$$
 (C)

$$g(\alpha + \beta) = f(\alpha) \ g(\beta) - g(\alpha) \ f(\beta)$$
 (D)

(1)(2)で示されたことのいくつかを利用すると、式(A) \sim (D)のうち、

ネ 以外の三つは成り立たないことがわかる。 **ネ** は左辺と右辺をそれぞれ 計算することによって成り立つことが確かめられる。

ネ の解答群

(0)(A)

(B)

② (C)

③ (D)

問題539 第1問(必答問題)の一部(配点 15)

(22 共通テスト 数ⅡB)

問題 [2] a, b は正の実数であり, $a \ne 1$, $b \ne 1$ を満たすとする。太郎さんは $\log_a b$ と $\log_b a$ の大小関係を調べることにした。

(1) 太郎さんは次のような考察をした。

まず、
$$\log_3 9 = 2$$
 、 $\log_9 3 = \frac{1}{2}$ である。この場合

 $\log_3 9 > \log_9 3$

が成り立つ。

一方,
$$\log_{\frac{1}{4}}$$
 $=$ $-\frac{3}{2}$, $\log_{\frac{1}{4}} \frac{1}{4} = -\frac{2}{3}$ である。この場合 $\log_{\frac{1}{4}}$ $=$ $\log_{\frac{1}{4}}$

が成り立つ。

(2) ここで,

$$\log_a b = t \qquad \qquad \cdots$$

とおく。

(1) の考察をもとにして、太郎さんは次の式が成り立つと推測し、それが正しいことを確かめることにした。

$$\log_b a = \frac{1}{t} \qquad \qquad \dots$$

① により、 ② である。このことにより ② が得られ、② が成り立つことが確かめられる。

ソ の解答群

- $(4) \quad t^a = b$
- $(5) \quad t^b = a$

タの解答群

- $(4) \quad t = b^{\frac{1}{4}}$
- $(5) t = a^{\frac{1}{b}}$

(3) 次に,太郎さんは(2)の考察をもとにして

$$t > \frac{1}{t}$$

を満たす実数t ($t \neq 0$) の値の範囲を求めた。

t>0 ならば、③ の両辺にt を掛けることにより、 $t^2>1$ を得る。 このようなt (t > 0) の値の範囲は1 < t である。

t < 0 ならば、③ の両辺にt を掛けることにより、 $t^2 < 1$ を得る。

このようなt (t<0) の値の範囲は-1<t<0 である。

この考察により、③ を満たす $t(t \neq 0)$ の値の範囲は

$$-1 < t < 0$$
, $1 < t$

であることがわかる。

ここで、 a の値を一つ定めたとき、不等式

 $\log_a b > \log_k a$

を満たす実数b (b > 0, $b \neq 1$) の値の範囲について考える。

④ を満たすb の値の範囲は、a > 1 のときは $\boxed{\mathbf{F}}$ であり、

0 < a < 1 のときは である。

チーの解答群

- ① $0 < b < \frac{1}{a}, \quad 1 < b < a$ ① $0 < b < \frac{1}{a}, \quad a < b$ ② $\frac{1}{a} < b < 1, \quad 1 < b < a$ ③ $\frac{1}{a} < b < 1, \quad a < b$

(4)
$$p = \frac{12}{13}$$
, $q = \frac{12}{11}$, $r = \frac{14}{13}$ とする。

次の $0\sim3$ のうち、正しいものは元である。

テーの解答群