3 [福岡大]

条件 $a_1=1$, $a_{n+1}=\frac{2a_n}{a_n+2}$ $(n=1, 2, 3, \dots)$ によって定められる数列 $\{a_n\}$ について 考える。

- (1) $b_n = \frac{1}{a_n}$ とおくとき, b_{n+1} を b_n で表せ。
- (2) 数列 $\{a_n\}$ の一般項を求めよ。

$$(1) b_{n+1} = \frac{1}{2a_n} = \frac{a_n + 2}{2a_n}$$

$$= \frac{a_n}{2a_n} + \frac{2}{2a_n}$$

$$= \frac{1}{2} + \frac{1}{a_n}$$

$$= \frac{1}{2} + b_n$$

(2) (1) より 数別
$$\{b_m\}$$
 は、
初項 $b_1 = \frac{1}{a_1} = \frac{1}{1} = 1$ 、
公差 $\frac{1}{2}$ の 等差数列であるから、
 $b_n = 1 + (n-1)\frac{1}{2}$ = $\frac{1}{2}n + \frac{1}{2}$ = $\frac{n+1}{2}$ ま、て $\frac{1}{a_n} = \frac{n+1}{2}$ $a_n = \frac{2}{n+1}$ 人

4 [愛媛大]

数列 $\{a_n\}$ の初項から第n項までの和 S_n が条件 $S_n=4n-3a_n$ を満たすとする。

- 初項 a₁ を求めよ。
- (2) 一般項 a_n を求めよ。

(1)
$$S_n = 4n - 30n$$
 1=
 $n = (54)$
 $S_1 = 4 \times 1 - 30$
 $S_1 = 0$
 $S_1 = 0$

4a₁ = 4
a₁ = 1
(2)
$$S_{n+1} = 4(n+1) - 3a_{n+1}$$

 $-) S_m = 4m - 3a_m$
 $S_{m+1} - S_m = 4 - 3a_{m+1} + 3a_m$
 $A_{n+1} = 4 - 3a_{m+1} + 3a_m$
 $4a_{m+1} = 3a_m + 4$
 $a_{m+1} = \frac{3}{4}a_m + 1$
 $a_{m+1} - 4 = \frac{3}{4}a_m + 1 - 4$
 $= \frac{3}{4}a_m - 3$
 $= \frac{3}{4}(a_m - 4)$
 $a_{m-1} - a_{m-1} - a_{m-1}$
 $a_{m-1} - a_{m-1} - a_{m-1}$
 $a_{m-1} - a_{m-1} - a_{m-1}$