# ミジンコの拍動と水温の相関性

# 1. 研究の目的と意義

一生の間に刻む心拍数はどんな生物でも同じであることを知り、寿命が最も長い、生きるのに 最適な温度は何度かを調べることを目的とする。

# 2. 使用した実験器具

- 顕微鏡
- ・こまごめピペット
- ・スポイト
- ・ピンセット
- ・ 柄付き針
- ・カバーガラス
- ・スライドガラス
- ・シャーレ
- スマホスタンド
- ・スマートフォン

## 3. 実験方法

- (1)オオミジンコでプレパラートを作る。
- (2)顕微鏡で心臓の観察をする。
- (3)スマートフォンを用いて一分の動画を撮影する。
- (4)カウンターアプリにて心拍数の計算をする。
- (5)四人で計測したデータの平均を算出する。
- (6) 夏と冬の水温の比較。



図1 実験器具



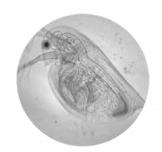



図 2 実験の様子 図 3 オオミジンコの様子

※ミジンコ全般の適正温度が 20~25℃なのに対してオオミジンコの適正温度は 10~30℃と一年中生存でき、体が大きく心臓の観察をするとき最も観察しやすい種類のためオオミジンコを選んだ。

# 4. 結果

#### 夏と冬の心拍数をまとめた表

表1 夏の結果

| 日時    | 生徒①  | 生徒②  | 生徒③  | 生徒④    | 平均   | 水温     |
|-------|------|------|------|--------|------|--------|
| 6月20日 | 217@ | 256回 | 210回 | 230回   | 228回 | 22.2°C |
| 7月28日 | 287回 | 262回 | 291回 | 280回   | 280回 | 25.4°C |
| 8月3日  | 315回 | 328回 | 306回 | 312回   | 315回 | 23.1°C |
| 8月17日 | 88回  | 87回  | 84回  | 86回    | 86回  | 29.1°C |
| 8月17日 | 258回 | 268回 | 273回 | 299回   | 274回 | 29.1°C |
| 8月18日 | 243回 | 286回 | 273回 | 267回   | 267回 | 29.1°C |
| 全体結果  |      |      | 241回 | 26.3°C |      |        |

表 2 冬の結果

| 日時     | 生徒①  | 生徒②  | 生徒③  | 生徒④    | 平均   | 水温     |
|--------|------|------|------|--------|------|--------|
| 11月18日 | 277回 | 279回 | 325@ | 264回   | 286回 | 16.2°C |
| 11月18日 | 310回 | 248回 | 275回 | 310回   | 277回 | 16.2°C |
| 11月18日 | 238回 | 259回 | 278回 | 257回   | 258回 | 16.2°C |
| 1月7日   | 266回 | 244回 | 233回 | 274回   | 252回 | 15.5°C |
| 1月7日   | 331回 | 296回 | 264回 | 264回   | 274回 | 15.5°C |
| 1月7日   | 320回 | 260回 | 337回 | 259回   | 294回 | 15.5℃  |
| 全体結果   |      |      | 274回 | 15.9°C |      |        |

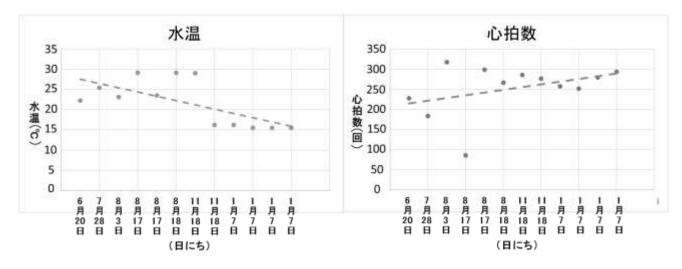



図 4 水温と心拍数の関係性

## 5. 考察

- (1) 水温が高いほど心拍数の平均が少なくなるため、夏のほうがミジンコにとってすごしやすいと言える。
- (2) 温帯よりも熱帯に生息するミジンコのほうが寿命は長いのではないか?
- (3) 平均寿命に気温が関係しているのではないか? ※(2) (3) の根拠は温度によって心拍数が異なること

# 6. 今後の課題

- (1) 様々な温度の水槽を用意して心拍数を計測する。
- (2) 温度以外にも心拍数が変化する条件が存在するか調べる。

## 7. 参考文献

- (1)「攤校生物研究部」http://nbrc.client.jp/kozin/takashi+ (参照:2022/1/11)
- (2)「温度変化で心拍数上昇!!環境が与えるミジンコの変化」http://xtckj0j7c.com/archives/273 (参照: 2022/1/11)

## 謝辞

今回課題研究を行うにあたり日本工業大学基幹工学部応用化学科佐野健一先生をはじめとした先生方には大変お世話になりました。この場をお借りしてお礼申し上げます。