対数(H25初稿)(R6)
対数の導入に当たって、具体的な場面を取り上げ、対数の意味とその必要性を実感させたい。10のx乗が2になる実数xはこれまで学習した数を使って表すことができないが、関数電卓を効果的に利用し、逐次近似的に探し出す経験をさせる。このような学習経験は、対数の意味の理解を深めるだけでなく、数学的な追求の方法やそのよさを知ることにもなる。また、対数のおよその値を求めることは、対数の意味を理解する上で重要であり、対数の大きさについての数感覚を身に付けることにつながる。およその値を求める経験をさせ、無理数という数の存在を認識させるようにする。そして、この数を、記号logを用いて表すことで、簡潔、明瞭に表現できるなど、記号化のよさを実感させたい。
|
箱ひげ図によるデータの比較〜箱ひげ図を用いて、データの傾向を把握し説明する〜(H24初稿)(R6)
身近な事例を問題として扱うことで、生徒に実感を伴って理解させる。実感を伴い、深い理解をすることで、基礎・基本が確実に定着し、活用力の向上につながる。また、説明させることや身に付けた基礎的・基本的な学力を活用させることで思考力・判断力・表現力等を向上させ、問題解決することで分かる喜びを知りながら、数学を学ぶことの楽しさや意義を実感させる。
|
2次関数とそのグラフ(H25初稿)(R6)
2次関数のグラフを考えるに当たって、先に式を与えてグラフをかかせることが一般的であるが、ここでは、先にグラフを与えてその式を考えさせることにした。そのことにより式を予想して確かめるという数学の方法を身に付けさせたい。確かめるに当たって、具体的な座標(数値)を当てはめてみることや1次関数の式とグラフの考察から類推が正しいことを確認させる。
|
散布図・相関係数とコンピュータ〜コンピュータを用いて、相関関係を考察する〜(H24初稿)(R6)
コンピュータを活用して身近にある多量なデータを扱う。2つの相関を散布図や相関係数で整理・分析し、傾向を把握できるようにさせる。課題は、生徒にとって身近なデータである新体力テストの結果を用いることにより、生徒に目的意識をもって主体的に取り組ませるような内容に工夫した。また、試行錯誤をしたり操作したりして身に付けた基礎的・基本的な学力を活用させながら、数学を学ぶことの楽しさや意義を実感させる。
|
数学的コミュニケーションを生かした「2次関数」の指導の工夫(H19初稿)(R6)
生徒が楽しいと感じながら、数学に対する関心や意欲を高め、数学的な表現力の向上をめざした「数学的コミュニケーションを生かした授業」にするために、授業の中で友達と話し合ったり、議論したりする場面の工夫改善に取り組んだ。
|
散布図・相関係数によるデータの比較〜データの相関を把握し説明する〜(H24初稿)(R6)
データの相関を調べるために散布図、相関係数を用いて相関関係を把握し、説明できるようにさせる。グループ内で散布図や相関係数を求める活動を分担することにより、相関関係について説明する時間を十分に確保する。このことにより、データの傾向を表現する力を養うようにさせる。また、外れ値の相関係数への影響を考察させることにより、相関関係の理解を深めさせる。
|
導関数の応用(H25初稿)(R6)
この授業では、3次関数のグラフを表す関数を決定する方法を複数考えさせる。グラフの読み取りから既習問題としての解法やそれ以外の解法など多様な考え方を導き、それぞれの解法の着眼点や発想などのよさを学び、生徒自身のものとできるようにさせたい。また、グラフは導関数を応用してかくことができるので、グラフから導関数を調べることを通して微分の逆操作の必要性に焦点をあてる。演算(積分)が用いられる場合について知り、演算の意味を明らかにし、その意味に基づいて考え、これを正しい式に表現させるようにしたい。
|
確率を求める過程を振り返り、論理的に考えさせる指導(R1)
AがB、Cの2人と異なるゲームを交互に3回行う間に2連勝する確率について、B、Cのどちらと先に対戦した方が勝つ確率が高くなるのかを予想させ、その確率を求めさせる。確率を求める過程を振り返り、“負ける確率”に着目することによって、その理由に気付かせる。学習活動を通して、直感的な結論と論理的に導き出した結論が異なる場合があることに気付かせ、論理的に考える重要性を認識させる。
|
ユークリッドの互除法(R2)
分数の約分の過程を考察することを通して,整数の除法と最大公約数の関係に自ら気付くことを目指す。さらに,ユークリッドの互除法を用いて2つの整数の最大公約数が求められることを理解し,その有用性について考える。
|
「いかにして伝えるか?」表現力を付けさせる指導〜対話による思考過程の意識化を通して〜(H29初稿)(R6)
軌跡の問題をどのように理解しているか捉えさせ、過去の学びで何が関連するかを考えられるようにする。どのように求めるのかを計画し問題を解く。次に、グループワークで自分の解き方を他に説明する。また、グループでまとめた解答を全体に発表し、「軌跡の動点をPとおく」、「条件から式をつくる」、「式を整理して方程式を求める」という手順により、軌跡の方程式の解法を気付かせる。最後に、振り返りの場面を設定し、活動内容をルーブリックにより自己評価させ、何を学んだかを明確に自覚させる。
|